Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Chinese Journal of Biotechnology ; (12): 2053-2069, 2023.
Article in Chinese | WPRIM | ID: wpr-981189

ABSTRACT

In recent years, the petroleum-based plastic pollution problem has been causing global attention. The idea of "degradation and up-cycling of plastics" was proposed for solving the environmental pollution caused by non-degradable plastics. Following this idea, plastics would be firstly degraded and then reconstructed. Polyhydroxyalkanoates (PHA) can be produced from the degraded plastic monomers as a choice to recycle among various plastics. PHA, a family of biopolyesters synthesized by many microbes, have attracted great interest in industrial, agricultural and medical sectors due to its biodegradability, biocompatibility, thermoplasticity and carbon neutrality. Moreover, the regulations on PHA monomer compositions, processing technology, and modification methods may further improve the material properties, making PHA a promising alternative to traditional plastics. Furthermore, the application of the "next-generation industrial biotechnology (NGIB)" utilizing extremophiles for PHA production is expected to enhance the PHA market competitiveness, promoting this environmentally friendly bio-based material to partially replace petroleum-based products, and achieve sustainable development with carbon-neutrality. This review summarizes the basic material properties, plastic upcycling via PHA biosynthesis, processing and modification methods of PHA, and biosynthesis of novel PHA.


Subject(s)
Polyhydroxyalkanoates , Plastics , Biotechnology , Petroleum , Carbon
2.
Chinese Journal of Biotechnology ; (12): 1527-1536, 2022.
Article in Chinese | WPRIM | ID: wpr-927798

ABSTRACT

Halomonas can grow on diverse carbon sources. As it can be used for unsterile fermentation under high-salt conditions, it has been applied as a chassis for next-generation industrial biotechnology. Short-chain volatile fatty acids, including acetate, propionate, and butyrate, can be prepared from biomass and are expected to be novel carbon sources for microbial fermentation. Halomonas sp. TD01 and TD08 were subjected to shaking culture with 10-50 g/L butyrate, and they were found to effectively synthesize poly-3-hydroxybutyrate with butyrate as the carbon source. The highest yield of poly-3-hydroxybutyrate was achieved at butyrate concentration of 20 g/L (9.12 g/L and 7.37 g/L, respectively). Butyrate at the concentration > 20 g/L inhibited cell growth, and the yield of poly-3-hydroxybutyrate decreased to < 4 g/L when butyrate concentration was 50 g/L. Moreover, Halomonas sp. TD08 can accumulate the copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate by using propionate and butyrate as carbon sources. However, propionate was toxic to cells. To be specific, when 2 g/L propionate and 20 g/L butyrate were simultaneously provided, cell dry weight and polymer titer were 0.83 g/L and 0.15 g/L, respectively. The addition of glycerol significantly improved cell growth and boosted the copolymer titer to 3.95 g/L, with 3-hydroxyvalerate monomer content of 8.76 mol%. Short-chain volatile fatty acids would be promising carbon sources for the production of polyhydroxyalkanoates by Halomonas.


Subject(s)
Butyrates , Carbon , Fatty Acids, Volatile , Halomonas , Polyhydroxyalkanoates , Propionates
3.
J Environ Biol ; 2020 Jan; 41(1): 43-52
Article | IMSEAR | ID: sea-214471

ABSTRACT

Aim: The aim of the present study was to identify and characterize the functions of key microbes mediating nitrification.Methodology: After sampling the biofilm from a submerged biofilter in a marine aquaculture system, selective media were used to isolate microbial strains involved in nitrification. Isolates were identified using physiological and biochemical assays and sequencing of 16S rRNA gene. Nitrogen removal under different conditions was characterized. Nitrogen removal pathway was characterized by a 15N tracer experiment. Representation of key microbes in the biolfim was characterized by metagenomics analysis. Results: Single-factor tests showed that Halomonas sp. strain Z8 exhibited good heterotrophic nitrification and aerobic denitrification abilities, with maximum NH4+-N, NO2--N and No3--N removal rates of 2.37, 1.28 and 1.7 mg N l-1 hr-1, respectively. The 15N isotope tracer experiment confirmed the aerobic nitrogen removal pathway of strain Z8. Average NO3-removal efficiencies were all above 80% in an aerated moving bed bioreactor inoculated with strain Z8 and employed to treat synthetic marine aquaculture wastewater. Metagenomic microbial community analysis revealed that Halomonas sp. Z8 was one of the dominant taxa at genus level, suggesting a vital role in removing nitrate from bioreactor

4.
Chinese Journal of Biotechnology ; (12): 1934-1944, 2017.
Article in Chinese | WPRIM | ID: wpr-243657

ABSTRACT

Large quantity of activated sludge is generated from wastewater treatment but without yet an appropriate deposition. High temperature can lyse the activate sludge so that nitrogen and phosphorus containing nutrients are released. Halomonas CJN was found to grow on the heat lysed activated sludge and glucose for production of bioplastic poly-3-hydroxybutyrate (PHB) in the absence of yeast extract, nitrogen and phosphorus sources as well as trace elements. This reduces the PHB production cost significantly. Furthermore, acetic acid formed from anaerobic fermentation of heat lysed activated sludge can be used to replace glucose for cell growth but not much for PHB production. After construction of an additional PHB synthesis pathway in Halomonas CJN, we can produce PHB entirely from heat lysed activated sludge, reducing production cost of PHB roughly from ¥ 30 000 Yuan/ton to ¥ 20 000 Yuan/ton, thus turning waste activated sludge to valuable raw material resource.

5.
Electron. j. biotechnol ; 18(6): 480-485, Nov. 2015. graf, tab
Article in English | LILACS | ID: lil-772294

ABSTRACT

Background Osmolytes with their effective stabilizing properties are accumulated as protectants not only against salinity but also against denaturing harsh environmental stresses such as freezing, drying, high temperatures, oxygen radicals and radiation. The present work seeks to understand how Halomonas sp. AAD12 cells redirect carbon flux specifically to replenish reactions for biomass and osmolyte synthesis under changing salinity and temperature. To accomplish this goal, a combined FBA-PCA approach has been utilized. Results Experimental data were collected to supply model constraints for FBA and for the verification of the model predictions, which were satisfactory. With restrictions on the various combinations of selected anaplerotic paths (reactions catalyzed by phosphoenolpyruvate carboxylase, pyruvate carboxylase or glyoxylate shunt), two major phenotypes were found. Moreover, under high salt concentrations, when the glucose uptake rate was over 1.1 mmoL DCW- 1 h- 1, an overflow metabolism that led to the synthesis of ethanol caused a slight change in both phenotypes. Conclusions The operation of the glyoxylate shunt as the major anaplerotic pathway and the degradation of 6-phosphogluconate through the Entner-Doudoroff Pathway were the major factors in causing a distinction between the observed phenotypes.


Subject(s)
Halomonas , Metabolic Flux Analysis , Adaptation, Physiological , Thermotolerance , Salt Stress
6.
Rev. colomb. biotecnol ; 16(2): 150-157, jul.-dic. 2014. ilus, tab
Article in Spanish | LILACS | ID: lil-731742

ABSTRACT

El objetivo de este estudio fue caracterizar bacterias halófilas con actividad amilolítica provenientes de las Salinas de San Blas-Junín, ubicadas en los Andes peruanos aproximadamente a 4100 m de altitud. Este estudio se realizó con 34 bacterias aisladas de muestras de suelos las cuales se cultivaron en agar agua de sales (SW) 5 % conteniendo extracto de levadura 0,5 % y almidón 1 %. El 41 % de bacterias mostró la capacidad de hidrolizar almidón, éstas fueron caracterizadas mediante pruebas fisiológicas y bioquímicas convencionales. Tres bacterias fueron Gram-negativas y once Gram-positivas. El 21 % (3/14) creció en un amplio rango de concentración de sales, entre 5 y 20 %. El 14 % (2/14) de las bacterias presentó actividad lipolítica, proteolítica y nucleolítica, y el 29 % (4/14), presentó actividad proteolítica y nucleolítica. Las bacterias se identificaron mediante los perfiles de restricción de los genes ribosómicos 16S amplificados, las enzimas usadas fueron Hae III, BstU I, Hinf I y Cfo I. Los genes ribosómicos 16S de siete bacterias que presentaron perfiles de ADN diferentes se amplificaron, secuenciaron y analizaron mediante programas bioinformáticos. Del análisis fenotípico y molecular de las 14 bacterias amilolíticas se obtuvieron dos grupos, uno perteneciente al género Halomonas (3) y el otro, al género Bacillus (11). Las bacterias amilolíticas caracterizadas podrían ser de potencial uso a nivel industrial.


The aim of this study was to characterize halophilic amylolytic bacteria from San Blas Salterns-Junin, located in the Peruvian Andes at approximately 4 100 m of altitude. This study was conducted with 34 bacteria isolated from soil samples which were cultured in salt water medium (SW) 5 % containing 0,5 % yeast extract and 1 % starch. It was found that 41 % were starch-degrading bacteria, which were further characterized with conventional physiological and biochemical tests. Three bacteria were Gram-negative and eleven Gram-positive. Also, 21 % (3/14) was able to grow in a wide range of saltconcentration from 5 to 20 %. We reported that 14 % (2/14) of bacteria had all lipolytic, proteolytic and nucleolytic activity, and 29 % (4/14) had both proteolytic and nucleolytic activity. Bacteria were identified by restriction 16S ribosomal genes profiles, enzymes used were Hae III, BstU I, Hinf I and Cfo I. 16S ribosomal genes of seven isolated wich showed different DNA profiles were amplified, partial sequenced and analyzed using bioinformatic programs. By both phenotypic and molecular analysis of 14 amylolytic bacteria two groups were obtained, one belonged to the genus Halomonas (3) and the other, to the genus Bacillus (11). The characterized amylolytic bacteria could have a potential industrial use.

7.
Article in English | IMSEAR | ID: sea-167160

ABSTRACT

During the course of survey of halophilic microorganisms, a total of sixteen bacterial isolates were obtained from coastal solar salterns of Orissa and West Bengal, India. Morphological, physiological and biochemical characteristics of these isolates indicate that majority of them belong to the genus Halomonas, however, members belonging to Cobetia and Halococcus were not uncommon. These isolates were screened for the production of extracellular enzymes such as amylase, glutaminase, asparaginase, xylanase, cellulase, gelatinase, inulinase, caseinase, pectinase, urease and lipase. Among these hydrolytic enzymes, glutamine and asparagine hydrolytic activities were predominant, although lipid and casein degrading activities were not inferior. However, amylase and gelatinase production were rare. None of these halophiles was able to degrade cellulose, inulin, pectin and xylan and only one isolate was capable of hydrolyzing urea.

8.
Rev. colomb. biotecnol ; 14(2): 81-88, dic. 2012. ilus, tab
Article in Spanish | LILACS | ID: lil-671883

ABSTRACT

Este trabajo tuvo como propósito contribuir al conocimiento de la interacción entre la cianobacteria alcalófila Arthrospira platensis y las bacterias que crecen asociadas a su mucilago. Se desarrolló un medio de cultivo heterotrófico en el cual se aislaron cinco cepas bacterianas asociadas a un monocultivo de A. platensis. Se determinó la capacidad de estas cinco cepas para producir ácido 3- indol acético (AIA). La tipificación molecular de los aislamientos bacterianos permitió identificarlos como Exiguobacterium aurantiacum str. DSM 20416, Xanthomonas sp. ML-122, Halomonas sp. Ap-5, Bacillus okhensis str. Kh10-101, Indibacter alkaliphilus, type str. LW1T; todas las cepas bacterianas obtenidas son halotolerantes, alcalófilas y productoras de AIA. Los resultados aportan evidencia para sugerir una interacción benéfica entre A. platensis y sus bacterias asociadas, quizá como estrategia evolutiva de cooperación para desarrollarse en un ambiente hipersalino.


The aim of this study was contribute to knowledge over alkalophilic cianobacteryum Arthrospira platensis and their interaction with some associated bacteria growing in their mucilage. Heterotrophic culture medium was designed, in this medium were isolated five bacterial strains associated to single culture of A. platensis. It was measured the 3-indol acetic acid (IAA) production by these bacterial strains. Molecular typing allowed identify these bacterial strains like Exiguobacterium aurantiacum str. DSM 20416, Xanthomonas sp. ML-122, Halomonas sp. Ap-5, Bacillus okhensis str. Kh10-101, Indibacter alkaliphilus, type str. LW1T; all these bacteria are halotolerant, alkalophilic and IAA producer. The findings allow suggest a beneficial interaction between A. platensis and their associated bacteria, maybe as evolutionary strategy of cooperation to grow and develop in hypersaline environments.


Subject(s)
Bacillus , Bacteria , Cyanobacteria , Halomonas , Xanthomonas
9.
Rev. argent. microbiol ; 43(2): 107-110, jun. 2011. ilus, graf
Article in English | LILACS | ID: lil-634680

ABSTRACT

In this study, two halophilic bacterial strains isolated from saline habitats in Argentina grew in the presence of gas oil. They were identified as Halomonas spp. and Nesterenkonia sp. by 16S ribosomal RNA sequencing. Chemotaxis towards gas oil was observed in Halomonas spp. by using swimming assays.


En el presente trabajo se aislaron dos cepas bacterianas halofílicas a partir de muestras obtenidas en ambientes salinos de Argentina, que crecieron en presencia de gasoil como única fuente de carbono. Las cepas aisladas se identificaron como Halomonas spp. y Nesterenkonia sp. mediante secuenciación del gen del ARN ribosomal 16S. En ensayos de swimming, las cepas del genero Halomonas spp. mostraron una respuesta quimiotáctica hacia el gas oil.


Subject(s)
Chemotaxis/drug effects , Halomonas/drug effects , Micrococcaceae/drug effects , Petroleum , Argentina , Biodegradation, Environmental , Hydrocarbons , Halomonas/growth & development , Halomonas/isolation & purification , Micrococcaceae/growth & development , Micrococcaceae/isolation & purification , Ribotyping , Salt Tolerance , Species Specificity , Seawater/microbiology , Water Microbiology , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL